技術文章
Technical articles
熱門搜索:
P760/01_2760nm單模垂直腔面發射激光器
VCSEL-20-M激光控制驅動器
ZNSP25.4-1IR拋光硫化鋅(ZnS)多光譜(透明)窗片 0.37-13.5um 25.4X1.0mm(晶體/棱鏡
HB-C0BFAS0832x4 QPSK C波段相干混頻器(信號解調/鎖相放大器等)
Frequad-W-CW DUV 單頻連續激光器 213nm 10mW Frequad-W
ER40-6/125截止波長1300nm 高摻雜EDF摻鉺光纖
GD5210Y-2-2-TO46905nm 硅雪崩光電二極管 400-1100nm
SNA-4-FC-UPC日本精工法蘭FC/UPC(連接器/光纖束/光纜)
WISTSense Point 緊湊型高精度光纖傳感器解調儀(信號解調/鎖相放大器等)
CO2激光光譜分析儀
1030nm超短脈沖種子激光器PS-PSL-1030
FLEX-BF裸光纖研磨機
NANOFIBER-400-9-SA干涉型單模微納光纖傳感器 1270-2000nm
高能激光光譜光束組合的光柵 (色散勻化片)
IRV2000-1X350-2000nm 1倍紅外觀察鏡
S+C+L波段 160nm可調諧帶通濾波器
一、研究背景超短脈沖的出現,為人們以高時間分辨研究微觀超快動力學過程提供了可能,推動了人們對光與物質相互作用的理解。微觀范疇內,分子轉動過程時間尺度在皮秒量級,分子振動過程時間尺度在飛秒量級。而原子、分子、固體中電子運動時間尺度為阿秒量級,需要阿秒寬度的超短脈沖對其進行測量和研究。2001年,P.Agostini小組產生了脈沖寬度250as的13~19階高次諧波的阿秒脈沖串。同年,F.Krausz小組得到了脈寬650as的單個阿秒脈沖,標志著超快研究進入阿秒領域。其后20多年...
一、背景介紹光學技術具有非電離輻射、高分辨率、高對比度和對生物組織異變高度靈敏等特性,在生物醫學中扮演著越來越重要的角色,非常適用于生物組織的研究,包括成像、傳感、治療、刺激以及控制等等。然而由于生物組中光學折射率分布不均,光在生物組織中的傳播會受到很強的散射影響,導致了純光學技術的穿透深度和空間分辨率“魚和熊掌不可兼得”;高分辨率光學成像應用僅限于樣品淺表層,當成像深度增加時分辨率急劇下降。如何實現光在深層生物組織里的高分辨率成像或應用,是人們期盼已久的目標。香港理工大學賴...
一、研究背景隨著半導體工業的發展,光刻分辨率限制了極大規模集成電路制造集成度的進一步提升。在采用193nm光刻技術實現32nm甚至22nm節點后,光刻技術的發展遇到了瓶頸。為了進一步減小芯片的特征尺寸,采用更短波長的極紫外(EUV)光刻技術應運而生。EUV光刻目前采用13.5nm(2%帶寬)波長極紫外光作為曝光光源,這是綜合考慮靶材利用率、光譜純度、極紫外轉化效率等因素最終選定的波長。其中,錫已經成為EUV光源最主要的靶材。激光等離子體(LPP)和激光誘導放電等離子體(LDP...
一、背景介紹光量子精密測量作為當代量子力學的重要應用領域之一,一直以來備受關注。量子精密測量旨在利用量子資源提高物理系統中未知參數的測量精度,為基礎科學研究和實際工程應用帶來重要突破。光子系統作為量子信息處理的理想載體,具有相干時間長、不易受到環境干擾等優勢,因此在光量子精密測量中扮演著重要角色。近年來,光量子精密測量領域取得了令人矚目的進展,為光子系統的高精度測量和傳感應用提供了新的可能性。該綜述重點介紹光量子精密測量的關鍵技術進展,并展望未來的發展方向。二、量子精密測量的...
一、背景介紹1968年,Veselago提出左手材料的概念,超構材料這一嶄新的領域宣告誕生,并在隨后的數十年里逐漸發展成熟,取得廣泛應用。然而,超構材料面臨著微納加工工藝的限制與效率損耗的問題,這制約了其進一步的發展。作為超構材料的二維形式,超構表面通過在二維平面上排布超構原子——亞波長級別的散射體或者孔洞——實現特定的電磁調控功能。相比于超構材料,超構表面在保留光場調控高自由度的同時,顯著減輕了加工制造難度,提高了器件的能量利用效率。目前,超構表面的工作波長范圍已經覆蓋微波...
研究背景表面增強拉曼光譜(SERS)作為一種光學無損分析技術,因其高靈敏度與強特異性被廣泛應用于環境檢測、醫學診斷等多種領域。SERS襯底一般采用金屬納米結構耦合光場形成局域表面等離激元共振(LSPR),顯著增強了拉曼散射截面。激光化學還原法制備金屬納米結構因其化學成分純凈及工藝可控性高而受到廣泛關注。雖然飛秒激光直寫技術可以一步還原制備SERS襯底,但存在聚焦加工區域小、效率較低的問題,在金屬微納結構的大面積高效制造方面存在挑戰。因此,激光調控光場一步法化學還原制備圖案化金...
本文聚焦激光融合制造,從全局視角討論該工藝在柔性微納傳感器制造中的應用形式,依次介紹了激光增材、等材與減材三種制造方法,并重點分析加工機理與典型目標材料,突出了激光融合制造在柔性微納傳感中的技術優勢。之后具體展示了激光融合制造在柔性物理、化學、電生理與多模態微納傳感器中的典型應用,并對相關研究及最新進展進行討論。最后,針對該領域現存技術挑戰與未來發展趨勢進行總結與展望。二、激光增材制造激光增材制造,即利用激光作為局部能量源,將納米前驅體材料加熱熔融(還原),并經燒結、累加、逐...
研究背景微螺旋結構在微機器人、手性超材料和生物工程等領域有著重要應用,這些應用都對微螺旋結構的尺寸、形貌提出了較高要求。飛秒激光雙光子聚合(TPP)技術能夠實現亞微米精度的真三維加工,十分適合制備上述這種具有復雜形貌的三維微結構。傳統雙光子聚合技術采用單點直寫曝光方案制備微結構,其效率較低。高效率加工需要昂貴、精密的運動控制系統配合,這限制了相關制造技術的實用性。近年來,光場調控技術的快速發展豐富了激光加工手段。結構光場已被用于單次曝光快速制備微螺旋,但所設計的螺旋光場可調控...